题目内容

12、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,将直角梯形ABCD沿CE折叠,使点D落在AB上的F点,若AB=BC=12,EF=10,∠FCD=90°,则AF=
6或8
分析:此题需要运用全等三角形来求解,过C作CG⊥AD于G;易证得△CGD≌△CBF,得BF=GD,然后用未知数表示出AF的长,进而可得GD、EG、AE的表达式,即可在Rt△AEF中,由勾股定理求得AF的长.
解答:解:过C作CG⊥AD于G,则BC=AG=12;
由折叠的性质知:CF=CD,EF=ED=10,
又∵∠GCD=∠BCF=90°-∠FCG,∠B=∠CGD=90°,
∴△CBF≌△CGD,得BF=GD,CG=BC=12,即AB=CG=12;
设AF=x,则BF=GD=12-x,EG=ED-GD=10-(12-x)=x-2,
AE=AG-EG=12-(x-2)=14-x;
在Rt△AEF中,AF=x,AE=14-x,EF=10;
由勾股定理得:x2+(14-x)2=102,解得x=6,x=8;
故AE的长为6或8.
点评:此题主要考查的是图形的翻折变换,涉及到全等三角形的判定和性质、勾股定理等知识的综合应用,能够正确的构造出全等三角形是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网