题目内容
【题目】如图,在△ABC 中,∠BAC=90°,AB=AC,D 是 AC 边上一动点, CE⊥BD 于 E.
(1)如图(1),若 BD 平分∠ABC 时,①求∠ECD 的度数;②求证:BD=2EC;
(2)如图(2),过点 A 作 AF⊥BE 于点 F,猜想线段 BE,CE,AF 之间的数量关系并证明你的猜想.
【答案】(1)①22.5°;②见解析;(2) BE﹣CE=2AF,理由见解析.
【解析】
(1)①根据等腰直角三角形的性质得出∠CBA=45,再利用角平分线的定义解答即可;
②延长CE交BA的延长线于点G得出CE=GE,再利用AAS证明ΔABD≌ΔACG,利用全等三角形的性质解答即可;
(2)过点A作AH⊥AE,交BE于点H,证明ΔABH≌ΔACE,进而得出CE=BH,利用等腰直角三角形的判定和性质解答即可.
解:(1)①∵在△ABC 中,∠BAC=90°,AB=AC,
∴∠CBA=45°,
∵BD 平分∠ABC,
∴∠DBA=22.5°,
∵CE⊥BD,
∴∠ECD+∠CDE=90°,∠DBA+∠BDA=90°,
∵∠CDE=∠BDA,
∴∠ECD=∠DBA=22.5°;
②延长 CE 交 BA 的延长线于点 G,如图 1:
∵BD 平分∠ABC,CE⊥BD,
∴CE=GE,
在△ABD 与△ACG 中,
,
∴△ABD≌△ACG(AAS),
∴BD=CG=2CE;
(2)结论:BE﹣CE=2AF.
过点 A 作 AH⊥AE,交 BE 于点 H,如图 2:
∵AH⊥AE,
∴∠BAH+∠HAC=∠HAC+∠CAE,
∴∠BAH=∠CAE,
在△ABH 与△ACE 中,
∴△ABH≌△ACE(ASA),
∴CE=BH,AH=AE,
∴△AEH 是等腰直角三角形,
∴AF=EF=HF,
∴BE﹣CE=2AF.