题目内容
【题目】阅读下面的文字,解答问题
大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.
又例如:<<,即2<<3,
∴的整数部分为2,小数部分为(﹣2)
请解答:
(1)整数部分是 ,小数部分是 .
(2)如果的小数部分为a,的整数部分为b,求|a﹣b|+的值.
(3)已知:9+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.
【答案】(1)7;-7;(2)5;(3)13-.
【解析】
(1)估算出的范围,即可得出答案;
(2)分别确定出a、b的值,代入原式计算即可求出值;
(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求.
解:(1)∵7﹤﹤8,
∴的整数部分是7,小数部分是-7.
故答案为:7;-7.
(2)∵3﹤﹤4,
∴,
∵2﹤﹤3,
∴b=2
∴|a-b|+
=|-3-2|+
=5-+
=5
(3)∵2﹤﹤3
∴11<9+<12,
∵9+=x+y,其中x是整数,且0﹤y<1,
∴x=11,y=-11+9+=-2,
∴x-y=11-(-2)=13-
练习册系列答案
相关题目