题目内容
【题目】如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于F,交AC于E,过点O作OD⊥BC于D,下列三个结论: ①∠AOB=90°+;②当∠C=90°时,E,F分别是AC,BC的中点;③若OD=a,CE+CF=2b,则S△CEF=ab,其中正确的是( )
A. ①②③B. ①③C. ①②D. ①
【答案】B
【解析】
根据三角形的内角和定理可得∠BAC+∠ABC=180°-∠C,再根据角平分线的定义可得∠OAB+∠OBA=(∠BAC+∠ABC),然后根据三角形的内角和定理列式整理即可得解,判断出①正确;根据角平分线的定义判断出点O在∠ACB的平分线上,从而得到点O不是∠ACB的平分线的中点,然后判断出②错误;根据角平分线上的点到角的两边距离相等可得点O到AC的距离等于OD,再利用三角形的面积公式列式计算即可得到S△CEF=ab,判断出③正确.
解:在△ABC中,∠BAC+∠ABC=180°-∠C,
∵∠BAC和∠ABC的平分线相交于点O,
∴∠OAB+∠OBA=(∠BAC+∠ABC)=90°-∠C,
在△AOB中,∠AOB=180°-(90°-∠C)=90°+∠C,故①正确;
∵∠BAC和∠ABC的平分线相交于点O,
∴点O在∠ACB的平分线上,
∴点O不是∠ACB的平分线的中点,
∵EF∥AB,
∴E,F一定不是AC,BC的中点,故②错误;
∵点O在∠ACB的平分线上,
∴点O到AC的距离等于OD,
∴S△CEF=(CE+CF)OD=2ba=ab,故③正确;
综上所述,正确的是①③.
故选:B.
练习册系列答案
相关题目