题目内容
【题目】已知矩形ABCD中,AB=3,BC=4,CE平分∠ACB交AB于点E,M为CE的中点,连结BM,将△BCM绕点C顺时针旋转至△B′CM′,B′M′交AD于Q,延长CM′交AD于P,若PQ=PM′,则PQ= .
【答案】﹣.
【解析】
试题分析:首先证明四边形ACM'Q是等腰梯形,设PQ=x,在直角△CDP中,根据勾股定理即可得到关于x的方程求得x的值.
解:设PQ=x,
∵CE平分∠ACB,
∴∠BCE=∠ACE,且=,
∵AB=3,BC=4,
∴AC=5,
∴,
∴BE=,AE=,
∴CE=,
∴CM=.
∵M是CE的中点,且△BCE是直角三角形,
∴BM=CM=EM,
∴∠CBM=∠BCM=∠ACE,
又△B'CM'是△BCM旋转得到,
∴△B'CM'≌△BCM.
∵PQ=P'M,
∴∠PM'Q=∠PQM'=2∠B'CM'=∠ACB.
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠ACB=∠CAD,
∴∠PQM'=CAD,
∴AC∥B'M',
∴∠PM'Q=∠ACP,
∴∠CAD=∠ACP,
∴四边形ACM'Q是等腰梯形,
∴AQ=CM'=,
∴PD=+x,
在直角△CDP中,根据勾股定理得:CP2=PD2+CD2,
(+x)2=(4﹣﹣x)2+9,另t=+x,则t2=(4﹣t)2+9,
∴t=,
∴+x=,
∴x=﹣,
∴PQ=﹣.
故答案是:﹣.
练习册系列答案
相关题目