题目内容
如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67º,则∠1=
A.23º | B.46º | C.67º | D.78º |
B
根据题意得:AB=AC,
∴∠ACB=∠ABC=67°,
∵直线l1∥l2,
∴∠2=∠ABC=67°,
∵∠1+∠ACB+∠2=180°,
∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46º.
故选B.
∴∠ACB=∠ABC=67°,
∵直线l1∥l2,
∴∠2=∠ABC=67°,
∵∠1+∠ACB+∠2=180°,
∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46º.
故选B.
练习册系列答案
相关题目