题目内容
【题目】已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.
(1)求t;
(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;
(3)若1≤a≤2,设当≤x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.
【答案】(1)t=1;(2)或;(3)m﹣n的最小值
【解析】
(1)把A(t,1)代入y=x即可得到结论;
(2)根据题意得方程组,解方程组即可得到结论;
(3)把A(1,1)代入y=ax2+bx+4得,b=3a,得到y=ax2(a+3)x+4的对称轴为直线x=,根据1≤a≤2,得到对称轴的取值范围≤x≤2,当x=时,得到m=,当x=2时,得到n=,即可得到结论.
解:(1)把A(t,1)代入y=x得t=1;
(2)∵y=ax2+bx+4的图象与x轴只有一个交点,
∴,
∴或;
(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,
∴y=ax2﹣(a+3)x+4=a(x﹣)2﹣,
∴对称轴为直线x=,
∵1≤a≤2,
∴≤x=≤2,
∵≤x≤2,
∴当x=时,y=ax2+bx+4的最大值为m=﹣,
当x=2时,n=﹣,
∴m﹣n=,
∵1≤a≤2,
∴当a=2时,m﹣n的值最小,
即m﹣n的最小值.
练习册系列答案
相关题目