题目内容

【题目】如图,边长为a的等边△ACB中,E是对称轴AD上一个动点,连EC,将线段EC绕点C逆时针旋转60°得到MC,连DM,则在点E运动过程中,DM的最小值是_____

【答案】1.5

【解析】试题分析:取AC的中点G,连接EG,根据等边三角形的性质可得CD=CG,再求出∠DCF=∠GCE,根据旋转的性质可得CE=CF,然后利用边角边证明△DCF△GCE全等,再根据全等三角形对应边相等可得DF=EG,然后根据垂线段最短可得EG⊥AD时最短,再根据∠CAD=30°求解即可.

解:如图,取AC的中点G,连接EG

旋转角为60°

∴∠ECD+∠DCF=60°

∵∠ECD+∠GCE=∠ACB=60°

∴∠DCF=∠GCE

∵AD是等边△ABC的对称轴,

∴CD=BC

∴CD=CG

∵CE旋转到CF

∴CE=CF

△DCF△GCE中,

∴△DCF≌△GCESAS),

∴DF=EG

根据垂线段最短,EG⊥AD时,EG最短,即DF最短,

此时∵∠CAD=×60°=30°AG=AC=×6=3

∴EG=AG=×3=1.5

∴DF=1.5

故答案为:1.5

考点:旋转的性质;等边三角形的性质.

型】填空
束】
19

【题目】分解因式:

(1) (2)9(m+n)216(mn)2.

【答案】1-2a(a-3)2 ;2-(7m-n)(m-7n).

【解析】试题分析:因式分解的常用方法:提取公因式法,公式法,十字相乘法,分组分解法.

试题解析:(1)原式

2)原式

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网