题目内容
【题目】如图,边长为a的等边△ACB中,E是对称轴AD上一个动点,连EC,将线段EC绕点C逆时针旋转60°得到MC,连DM,则在点E运动过程中,DM的最小值是_____。
【答案】1.5
【解析】试题分析:取AC的中点G,连接EG,根据等边三角形的性质可得CD=CG,再求出∠DCF=∠GCE,根据旋转的性质可得CE=CF,然后利用“边角边”证明△DCF和△GCE全等,再根据全等三角形对应边相等可得DF=EG,然后根据垂线段最短可得EG⊥AD时最短,再根据∠CAD=30°求解即可.
解:如图,取AC的中点G,连接EG,
∵旋转角为60°,
∴∠ECD+∠DCF=60°,
又∵∠ECD+∠GCE=∠ACB=60°,
∴∠DCF=∠GCE,
∵AD是等边△ABC的对称轴,
∴CD=BC,
∴CD=CG,
又∵CE旋转到CF,
∴CE=CF,
在△DCF和△GCE中,
,
∴△DCF≌△GCE(SAS),
∴DF=EG,
根据垂线段最短,EG⊥AD时,EG最短,即DF最短,
此时∵∠CAD=×60°=30°,AG=AC=×6=3,
∴EG=AG=×3=1.5,
∴DF=1.5.
故答案为:1.5.
考点:旋转的性质;等边三角形的性质.
【题型】填空题
【结束】
19
【题目】分解因式:
(1) ; (2)9(m+n)2﹣16(m﹣n)2.
【答案】(1)-2a(a-3)2 ;(2)-(7m-n)(m-7n).
【解析】试题分析:因式分解的常用方法:提取公因式法,公式法,十字相乘法,分组分解法.
试题解析:(1)原式
(2)原式
练习册系列答案
相关题目