题目内容
【题目】小明跳起投篮,球出手时离地面m,球出手后在空中沿抛物线路径运动,并在距出手点水平距离4m处达到最高度4m.已知篮筐中心距地面3m,与球出手时的水平距离为8m,建立如图所示的平面直角坐标系.
(1)求此抛物线对应的函数关系式;
(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?
【答案】(1)y=;(2)不能正中篮筐中心;3米.
【解析】试题分析:(1)根据顶点坐标(4,4),设抛物线的解析式为:y=,由球出手时离地面m,可知抛物线与y轴交点为(0,),代入可求出a的值,写出解析式;
(2)先计算当x=8时,y的值是否等于3,把x=8代入得:y=,所以要想球经过(8,3),则抛物线得向上平移3﹣=个单位,即球出手时距离地面3米可使球直接命中篮筐中心.
试题解析:(1)设抛物线为y=,
将(0,)代入,得=,
解得a=,
∴所求的解析式为y=;
(2)令x=8,得y==≠3,
∴抛物线不过点(8,3),
故不能正中篮筐中心;
∵抛物线过点(8,),
∴要使抛物线过点(8,3),可将其向上平移个单位长度,故小明需向上多跳m再投篮(即球出手时距离地面3米)方可使球正中篮筐中心.
练习册系列答案
相关题目
【题目】高速路上因赶时间超速而频频发生交通事故,这样给自己和他人的生命安全带来直接影响,为了解车速情况,一名执法交警在高速路上随机测试了6个小轿车的车速情况记录如下:
车序号 | 1 | 2 | 3 | 4 | 5 | 6 |
车速(千米/时) | 100 | 95 | 106 | 100 | 120 | 100 |
则这6辆车车速的众数和中位数(单位:千米/时)分别是( )
A.100,95
B.100,100
C.102,100
D.100,103