题目内容
【题目】如图是由边长为1cm的若干个正方形叠加行成的图形,其中第一个图形由1个正方形组成,周长为4cm,第二个图形由4个正方形组成,周长为10cm.第三个图形由9个正方形组成,周长为16cm,依次规律…
(1)第四个图形有 个正方形组成,周长为 cm.
(2)第n个图形有 个正方形组成,周长为 cm.
(3)若某图形的周长为58cm,计算该图形由多少个正方形叠加形成.
【答案】(1)16,22;(2)n2,6n﹣2;(3)100个.
【解析】
试题分析:(1)将第1、2、3个图形中正方形个数写成序数的平方,周长是序数6倍与2的差,根据规律得到第4个图形中正方形个数和周长;
(2)延续(1)中规律写出第n个图形中正方形的个数和周长;
(3)若周长为58,可列方程,求出n的值,根据n的值从而求出其正方形个数;
解:(1)根据题意,知:
第一个图形:正方形有1=12个,周长为4=4+6×0;
第二个图形:正方形有:4=22个,周长为10=4+6×1;
第三个图形:正方形有:9=32个,周长为16=4+6×2;
故第四个图形:正方形有:42=16个,周长为4+6×3=22;
(2)根据以上规律,第n个图形有正方形n2个,其周长为:4+6(n﹣1)=6n﹣2;
(3)若某图形的周长为58cm,则有:6n﹣2=58,解得:n=10,
即第10个图形的周长为58cm,则第10个图形中正方形有102=100个.
故答案为:(1)16,22;(2)n2,6n﹣2.
练习册系列答案
相关题目