题目内容
【题目】如图,AD是⊙O的直径.
(1)如图1,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是 ,∠B2的度数是 ;
(2)如图2,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,则∠B3的度数是 ;
(3)如图3,垂直于AD的n条弦B1C1,B2C2,B3 C3,…,BnCn把圆周2n等分,则∠Bn的度数是 (用含n的代数式表示∠Bn的度数).
【答案】(1)22.5°,67.5°;(2)75°;(3)90°﹣.
【解析】
试题分析:(1)求出每条弧的度数,求出所求的圆周角所对的弧的度数,最后根据圆周角定理(圆周角的度数等于它所对的弧的度数的一半)得出即可;
(2)求出每条弧的度数,求出所求的圆周角所对的弧的度数,最后根据圆周角定理(圆周角的度数等于它所对的弧的度数的一半)得出即可;
(3)求出每条弧的度数,求出所求的圆周角所对的弧的度数,最后根据圆周角定理(圆周角的度数等于它所对的弧的度数的一半)得出即可.
解:(1)∵垂直于AD的两条弦B1C1,B2C2把圆周4等分,
∴弧B1C1、弧C1C2、弧B2C2、弧B1B2的度数都是90°,弧AB1=弧AC1,
∴弧AC1的度数是45°,
∴∠B1=×45°=22.5°,
∠B2=×(45°+90°)=67.5°,
故答案为:22.5°,67.5°;
(2)∵垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分
∴弧B1C1、弧C1C2、弧C2C3的度数都是60°,弧AB1=弧AC1,
∴弧AC1的度数是30°,
∴∠B3=×(30°+60°+60°)=75°,
故答案为:75°;
(3)∵垂直于AD的n条弦B1C1,B2C2,B3 C3,…,BnCn把圆周2n等分,
∴弧B1C1、弧C1C2、弧C2C3、…的度数都是()°=()°,弧AB1=弧AC1,
∴弧AC1的度数是()°,
∴∠Bn=×(+++…+)=×[+]°=90°﹣
故答案为:90°﹣.