ÌâÄ¿ÄÚÈÝ

Ö±Ïßl¾­¹ýA£¨1£¬0£©ÇÒÓëË«ÇúÏßy=
m
x
(x£¾0)
ÔÚµÚÒ»ÏóÏÞ½»ÓÚµãB£¨2£¬1£©£¬¹ýµãP£¨p+1£¬p-1£©£¨p£¾1£©×÷xÖáµÄƽÐÐÏß·Ö±ð½»ÓÚË«ÇúÏßy=
m
x
(x£¾0)
ºÍy=-
m
x
£¨x£¼0£©ÓÚM£¬NÁ½µã£¬
£¨1£©ÇómµÄÖµ¼°Ö±ÏßlµÄ½âÎöʽ£»
£¨2£©Ö±Ïßy=-x-3ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãC¡¢D£¬µãEÔÚÖ±Ïßy=-x-3ÉÏ£¬ÇÒµãEÔÚµÚÈýÏóÏÞ£¬Ê¹µÃ
CE
ED
=2
£¬Æ½ÒÆÏ߶ÎEDµÃÏ߶ÎHQ£¨µãEÓëH¶ÔÓ¦£¬µãDÓëQ¶ÔÓ¦£©£¬Ê¹µÃH¡¢QÇ¡ºÃ¶¼ÂäÔÚy=
m
x
µÄͼÏóÉÏ£¬ÇóH¡¢QÁ½µã×ø±ê£®
£¨3£©ÊÇ·ñ´æÔÚʵÊýp£¬Ê¹µÃS¡÷AMN=4S¡÷APM£¿Èô´æÔÚ£¬ÇóËùÓÐÂú×ãÌõ¼þµÄpµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÓɵãB£¨2£¬1£©ÔÚy=
m
x
ÉÏ£¬ÓÐ1=
m
2
£¬¼´m=2£®
ÉèÖ±ÏßlµÄ½âÎöʽΪy=kx+b£¬
ÓɵãA£¨1£¬0£©£¬µãB£¨2£¬1£©ÔÚy=kx+bÉÏ£¬
µÃ
k+b=0
2k+b=1
£¬
½âµÃ
k=1
b=-1
£¬
¹ÊËùÇóÖ±ÏßlµÄ½âÎöʽΪy=x-1£»

£¨2£©¡ßÖ±Ïßy=-x-3ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãC¡¢D£¬µãEÔÚÖ±Ïßy=-x-3ÉÏ£¬ÇÒµãEÔÚµÚÈýÏóÏÞ£¬Ê¹µÃ
CE
ED
=2
£¬
¡àDµãµÄºá×ø±ê±ÈEµãµÄºá×ø±ê´ó1£¬DµãµÄ×Ý×ø±ê±ÈEµãµÄ×Ý×ø±êС1£»
¡àHµãµÄºá×ø±ê±ÈQµãµÄºá×ø±ê´ó1£¬HµãµÄ×Ý×ø±ê±ÈQµãµÄ×Ý×ø±êС1£¬
ÉèHµãµÄ×ø±êΪ£¨u£¬v£©£¬QµãµÄ×ø±ê£¨u+1£¬v-1£©£¬Ôò
uv=2
(u+1)(v-1)=2
£¬
½âµÃ
u1=1
v1=2
£¬
u2=-2
v2=-1
£¨²»ºÏÌâÒâÉáÈ¥£©£¬
ÔòHµãµÄ×ø±êΪ£¨1£¬2£©£¬QµãµÄ×ø±ê£¨2£¬1£©£»

£¨3£©´æÔÚ£®ÀíÓÉÈçÏ£º
¡ßPµã×ø±êΪ£¨p+1£¬p-1£©£¬MN¡ÎxÖᣬ
¡àµãM¡¢NµÄ×Ý×ø±ê¶¼Îªp-1£¬
¡àM£¨
2
p-1
£¬p-1£©£¬N£¨-
2
p-1
£¬p-1£©£¬¿ÉµÃMN=
4
p-1
£¬
¡àS¡÷AMN=
1
2
4
p-1
•£¨p-1£©=2£¬
µ±p£¾1ʱ£¬S¡÷APM=
1
2
£¨p+1-
2
p-1
£©£¨p-1£©=
1
2
£¨p2-3£©£¬
¡ßS¡÷AMN=4S¡÷APM£¬
¡à4¡Á
1
2
£¨p2-3£©=2£¬
½âµÃp1=-2£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬p2=2£®
¡àÂú×ãÌõ¼þµÄpµÄֵΪ2£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø