题目内容

【题目】已知线段MN=8,C是线段MN上一动点,在MN的同侧分别作等边△CMD和等边△CNE.
(1)如图①,连接DN与EM,两条线段相交于点H,求证ME=DN,并求∠DHM的度数;

(2)如图②,过点D、E分别作线段MN的垂线,垂足分别为F、G,问:在点C运动过程中,DF+EG的长度是否为定值,如果是,请求出这个定值,如果不是请说明理由;

(3)当点C由点M移到点N时,点H移到的路径长度为(直接写出结果)

【答案】
(1)

证明:∵△CMD与△CNE是等边三角形,

∴CM=CD,EC=NC,∠DCM=∠ECN=60°,

∴∠DCN=∠MCE=120°,

在△MCE与△DCN中,

∴△MCE≌△DCN,

∴ME=DN,∠CME=∠CDN,

∵∠1=∠2,

∴180°﹣∠CME﹣∠1=180°﹣∠CDN﹣∠2,

∴∠DHM=∠DCM=60°;


(2)

解:DF+EG为定值,

理由:设MF=FC=x,则CG=NG=4﹣x,

∴DF= x,EG= (4﹣x),

∴DF+GE= x+ (4﹣x)=4


(3)
【解析】(3)解:如图③,当点C由点M移到点N时,点H移到的路径即为
∵∠MHD=60°,
∴∠MHN=120°,
∴∠MPN=60°,
∴∠MON=120°,
∵MN=8,
∴OM=ON=
∴点H移到的路径长度= =
所以答案是:

【考点精析】根据题目的已知条件,利用三角形的内角和外角和等边三角形的性质的相关知识可以得到问题的答案,需要掌握三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;等边三角形的三个角都相等并且每个角都是60°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网