题目内容

【题目】如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.

(1)如图,若∠AOC=40°,求∠DOE的度数;

(2)如图,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示)

(3)将图中的∠COD绕顶点O顺时针旋转至图的位置,OE平分∠BOC.

探究∠AOC∠DOE的度数之间的关系,写出你的结论,并说明理由;

∠AOC的内部有一条射线OF,且∠AOC﹣3∠AOF=2∠BOE,试确定∠AOF∠DOE的度数之间的关系,说明理由.

【答案】(1)20°;(2)∠DOE=;(3)①∠DOE=∠AOC,理由见解析;②4∠EOD﹣3∠AOF=180°,理由见解析.

【解析】

首先求得∠COB的度数,然后根据角平分线的定义求得∠COE的度数,再根据∠DOE=COD-COE即可求解;

解法与(1)相同,把①中的60°改成α即可;

①把∠AOC的度数作为已知量,求得∠BOC的度数,然后根据角的平分线的定义求得∠COE的度数,再根据∠DOE=COD-COE求得∠DOE,即可解决;

②由∠AOC﹣3AOF=2BOE, OE平分∠BOC,AOC和∠DOE的关系,可以建立各个角之间的关系,从而可以得到∠AOF与∠DOE的度数之间的关系

1)∵∠AOC=40°

∴∠COB=180°﹣∠AOC=180°40°=140°

OE平分∠COB

∴∠COE=COB=70°

又∵∠COD=90°

∴∠EOD=COD﹣∠COE=20°

2)∠DOE=

3)①∠DOE=AOC,理由如下:

OE平分∠COB

∴∠COE=COB

又∵∠COD=90°

∴∠EOD=COD﹣∠COE=90°COB

∵∠COB+AOC=180°

∴∠COB=180°﹣∠AOC

∴∠EOD=90°180°﹣∠AOC=AOC

4EOD3AOF=180°,理由如下:

OE平分∠COB

∴∠EOB=COE

∴∠AOC2BOE=AOC2COE

=AOC290°﹣∠EOD

=AOC+2EOD180°

又∵∠DOE=AOC

∴∠AOC2BOE=4EOD180°

∵∠AOC3AOF=2BOE

4EOD3AOF=180°

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网