题目内容
【题目】如图, 以边长为的正方形纸片的边为直径做, 交对角线于点.
(1)线段
(2) 如图, 以点为端点作, 交于点, 沿将四边形剪掉, 使绕点逆时针旋转(如图),设旋转角为, 旋转过程中与交于点.
①当时,请求出线段的长;
②当时,求出线段的长;判断此时与的位置关系,并说明理由;
③当 时,与相切.
【答案】(1);(2)①;②相离;③.
【解析】
(1)连接BE,则可得出△AEB是等腰直角三角形,再由AB=8,可得出AE的长.
(2)①连接OA、OF,可判断出△OAF是等边三角形,从而可求出AF的长;②此时可得DAM=30°,根据AD=8可求出AF的长,也可判断DM与⊙O的位置关系;③根据AD等于⊙O的直径,可得出当DM与⊙O相切时,点D在⊙O上,从而可得出α的度数.
解:(1)连接BE,
∵AC是正方形ABCD的对角线,
∴∠BAC=45°,
∴△AEB是等腰直角三角形,
又∵AB=8,
∴AE=4;
(2)①连接OA、OF,
由题意得,∠NAD=30°,∠DAM=30°,
故可得∠OAM=30°,∠DAM=30°,
则∠OAF=60°,
又∵OA=OF,
∴△OAF是等边三角形,
∵OA=4,
∴AF=OA=4;
②连接B'F,此时∠NAD=60°,
∵AB'=8,∠DAM=30°,
∴AF=AB'cos∠DAM=8×=4;
此时DM与⊙O的位置关系是相离;
③
∵AD=8,直径的长度相等,
∴当DM与⊙O相切时,点D在⊙O上,
故此时可得α=∠NAD=90°.
【题目】车间有20名工人,某天他们生产的零件个数统计如下表.
车间20名工人某一天生产的零件个数统计表
生产零件的个数(个) | 9 | 10 | 11 | 12 | 13 | 15 | 16 | 19 | 20 |
工人人数(人) | 1 | 1 | 6 | 4 | 2 | 2 | 2 | 1 | 1 |
(1)求这一天20名工人生产零件的平均个数;
(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?