题目内容
【题目】如果一个正整数能表示成两个连续偶数的平方差,那么称这个正整数为“巧数”,如:,,,因此4,12,20这三个数都是“巧数”.
(1)400和2020这两个数是“巧数”吗?为什么?
(2)设两个连续偶数为和(其中取正整数),由这两个连续偶数构造的“巧数”是4的倍数吗?为什么?
(3)求介于50到101之间所有“巧数”之和.
【答案】(1)400不是“巧数”,2020是“巧数”,理由见解析;(2)是,理由见解析;(3)532.
【解析】
(1)根据“巧数”的定义进行判断即可;
(2)列出这两数的平方差,运用平方差公式进行计算,对结果进行分析即可;
(3)介于50到100之间的所有“巧数”中,最小的为:142-122=52,最大的为:262-242=100,将它们全部列出不难求出他们的和.
解:(1)400不是“巧数”,2020是“巧数”.原因如下:
因为,故400不是“巧数”,
因为2020=5062-5042,故2020是“巧数”;
(2)
∵n为正整数,
∴2n-1一定为正整数,
∴4(2n-1)一定能被4整除,
即由这两个连续偶数构造的“巧数”是4的倍数;
(3)介于50到100之间的所有“巧数”之和,
S=(142-122)+(162-142)+(182-162)+…+(262-242)=262-122=532.
故答案是:532.
练习册系列答案
相关题目