题目内容

【题目】如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.

(1)当∠APB=28°时,求∠B和 的度数;
(2)求证:AC=AB.
(3)在点P的运动过程中
①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;
②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.

【答案】
(1)

解:∵MN⊥AB,AM=BM,

∴PA=PB,

∴∠PAB=∠B,

∵∠APB=28°,

∴∠B=76°,

如图1,连接MD,

∵MD为△PAB的中位线,

∴MD∥AP,

∴∠MDB=∠APB=28°,

=2∠MDB=56°;


(2)

证明:∵∠BAC=∠MDC=∠APB,

又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,

∴∠BAP=∠ACB,

∵∠BAP=∠B,

∴∠ACB=∠B,

∴AC=AB;


(3)

解:①如图2,记MP与圆的另一个交点为R,

∵MD是Rt△MBP的中线,

∴DM=DP,

∴∠DPM=∠DMP=∠RCD,

∴RC=RP,

∵∠ACR=∠AMR=90°,

∴AM2+MR2=AR2=AC2+CR2

∴12+MR2=22+PR2

∴12+(4﹣PR)2=22+PR2

∴PR=

∴MR=

Ⅰ.当∠ACQ=90°时,AQ为圆的直径,

∴Q与R重合,

∴MQ=MR=

Ⅱ.如图3,当∠QCD=90°时,

在Rt△QCP中,PQ=2PR=

∴MQ=

Ⅲ.如图4,当∠QDC=90°时,

∵BM=1,MP=4,

∴BP=

∴DP= BP=

∵cos∠MPB= =

∴PQ=

∴MQ=

Ⅳ.如图5,当∠AEQ=90°时,

由对称性可得∠AEQ=∠BDQ=90°,

∴MQ=

综上所述,MQ的值为

②△ACG和△DEG的面积之比为

理由:如图6,∵DM∥AF,

∴DF=AM=DE=1,

又由对称性可得GE=GD,

∴△DEG是等边三角形,

∴∠EDF=90°﹣60°=30°,

∴∠DEF=75°=∠MDE,

∴∠GDM=75°﹣60°=15°,

∴∠GMD=∠PGD﹣∠GDM=15°,

∴GMD=∠GDM,

∴GM=GD=1,

过C作CH⊥AB于H,

由∠BAC=30°可得CH= AC= AB=1=MG,AH=

∴CG=MH= ﹣1,

∴SACG= CG×CH=

∵SDEG=

∴SACG:SDEG=


【解析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到 =2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2 , 即可得到PR= ,MR= ,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为 ;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH= AC=1=MG,即可得到CG=MH= ﹣1,进而得出SACG= CG×CH= ,再根据SDEG= ,即可得到△ACG和△DEG的面积之比.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网