题目内容
【题目】公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数 ,导致了第一次数学危机, 是无理数的证明如下: 假设 是有理数,那么它可以表示成 (p与q是互质的两个正整数).于是( )2=( )2=2,所以,q2=2p2 . 于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2 , p2=2m2 , 于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“ 是有理数”的假设不成立,所以, 是无理数.
这种证明“ 是无理数”的方法是( )
A.综合法
B.反证法
C.举反例法
D.数学归纳法
【答案】B
【解析】解:由题意可得:这种证明“ 是无理数”的方法是反证法. 故选:B.
【考点精析】通过灵活运用反证法,掌握先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法即可以解答此题.
练习册系列答案
相关题目
【题目】如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.
(1)求证:四边形ADCE的是矩形;
(2)若AB=17,BC=16,求四边形ADCE的面积.
【题目】体育委员统计了全班同学60秒跳绳的次数,并列出下面的频数分布表:
次数 | 60≤x<90 | 90≤x<120 | 120≤x<150 | 150≤x<180 | 180≤x<210 |
频数 | 16 | 25 | 9 | 7 | 3 |
(1)全班有多少同学?
(2)组距是多少?组数是多少?
(3)跳绳次数x在120≤x<180范围的同学有多少?占全班同学的百分之几(精确到0.1%)?