题目内容

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D两点,试问当x为何值时,线段CD有最大值,其最大值为多少?
(1)∵点P(-
1
2
9
8
)
在抛物
y1=-ax2-ax+1上,
-
1
4
a+
1
2
a+1=
9
8
,(2分)
解得a=
1
2
.(3分)

(2)如图,由(1)知a=
1
2

∴抛物线y1=-
1
2
x2-
1
2
x+1
y2=
1
2
x2-
1
2
x-1
.(5分)
-
1
2
x2-
1
2
x+1=0
时,解得x1=-2,x2=1.
∵点M在点N的左边,
∴xM=-2,xN=1.(6分)
1
2
x2-
1
2
x-1=0
时,解得x3=-1,x4=2.
∵点E在点F的左边,
∴xE=-1,xF=2.(7分)
∵xM+xF=0,xN+xE=0,
∴点M与点F对称,点N与点E对称.(8分)

(3)∵a=
1
2
>0

∴抛物线y1开口向下,抛物线y2开口向上.(9分)
根据题意,得CD=y1-y2=(-
1
2
x2-
1
2
x+1)-(
1
2
x2-
1
2
x-1)=-x2+2
.(11分)
∵xA≤x≤xB
∴当x=0时,CD有最大值2.(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网