题目内容
【题目】如图,点O是线段AH上一点,AH=3,以点O为圆心,OA的长为半径作⊙O,过点H作AH的垂线交⊙O于C,N两点,点B在线段CN的延长线上,连接AB交⊙O于点M,以AB,BC为边作ABCD.
(1)求证:AD是⊙O的切线;
(2)若OHAH,求四边形AHCD与⊙O重叠部分的面积;
(3)若NHAH,BN,连接MN,求OH和MN的长.
【答案】(1)证明见解析;(2);(3)OH,MN.
【解析】
(1)根据平行四边形的性质可知AD∥BC,证明OA⊥AD,又因为OA为半径,即可证明结论;
(2)利用锐角三角函数先求出∠OCH=30°,再求出扇形OAC的面积,最后求出△OHC的面积,两部分面积相加即为重叠部分面积;
(3)设⊙O半径OA=r=OC,OH=3-r,在Rt△OHC中,利用勾股定理求出半径r=,推出OH=,再在Rt△ABH和Rt△ACH中利用勾股定理分别求出AB,AC的长,最后证△BMN∽△BCA,利用相似三角形对应边的比相等即可求出MN的长.
(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∵∠AHC=90°,
∴∠HAD=90°,即OA⊥AD,
又∵OA为半径,
∴AD是⊙O的切线;
(2)如图,连接OC,
∵OHOA,AH=3,
∴OH=1,OA=2,
∵在Rt△OHC中,∠OHC=90°,OHOC,
∴∠OCH=30°,
∴∠AOC=∠OHC+∠OCH=120°,
∴S扇形OAC,
∵CH,
∴S△OHC1,
∴四边形ABCD与⊙O重叠部分的面积=S扇形OAC+S△OHC;
(3)设⊙O半径OA=r=OC,OH=3﹣r,
在Rt△OHC中,OH2+HC2=OC2,
∴(3﹣r)2+12=r2,
∴r,则OH,
在Rt△ABH中,AH=3,BH1,则AB,
在Rt△ACH中,AH=3,CH=NH=1,得AC,
在△BMN和△BCA中,
∠B=∠B,∠BMN=∠BCA,
∴△BMN∽△BCA,
∴即,
∴MN,
∴OH,MN.