题目内容

【题目】有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”.在“生长”了2 017次后形成的图形中所有正方形的面积和是____

1 2

【答案】2018

【解析】根据勾股定理和正方形的面积公式,知“生长”1次后,以直角三角形两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,即所有正方形的面积和是2×1=2;“生长”2次后,所有的正方形的面积和是3×1=3,推而广之即可求出“生长”2017次后形成图形中所有正方形的面积之和.

设直角三角形的是三条边分别是a,b,c.

根据勾股定理,得a2+b2=c2

由图1可知,“生长”1次后,以直角三角形两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,即所有正方形的面积和是2×1=2;

由图2可知,“生长”2次后,所有的正方形的面积和是3×1=3;

推而广之,“生长”了2017次后形成的图形中所有的正方形的面积和是2018×1=2018.

故答案为:2018

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网