题目内容
【题目】已知等边△ABC中AD⊥BC,AD=12,若点P在线段AD上运动,当AP+BP的值最小时,AP的长为( ).
A.4B.8C.10D.12
【答案】B
【解析】
过点P作PD⊥AC于D,过点B作BF⊥AC于F,根据等边三角形的性质可得:∠CAD=∠ABF=∠CBF=∠BAC=30°,从而可得:PD=AP,故AP+BP的最小值即为PD+BP的最小值,根据垂线段最短的性质即可判断BF即为PD+BP的最小值,再根据30°所对的直角边是斜边的一半求AP即可.
解:过点P作PD⊥AC于D,过点B作BF⊥AC于F,如下图所示
∵等边△ABC中AD⊥BC,
∴∠CAD=∠ABF=∠CBF=∠BAC=30°,
∴PD=AP
∴AP+BP的最小值即为PD+BP的最小值
∵在连接直线外一点与直线上各点的线段中,垂线段最短
∴BF即为PD+BP的最小值
∴BF与AD的交点即为P点,如下图所示
∵∠CAD=∠ABF=∠CBF =30°
∴AP= BP,PD=BP=AP
∵AD=12
∴AP+PD=12
∴AP+AP=12
解得:AP=8
故选B.
练习册系列答案
相关题目