题目内容
【题目】如图,已知四边形ABCD是菱形,DF⊥AB于点F,BE⊥CD于点E.
(1)求证:AF=CE;
(2)若DE=2,BE=4,求sin∠DAF的值.
【答案】(1)证明见解析;(2).
【解析】
试题分析:(1)根据AAS证明△ADF≌△CBE;(2)设BC=x,则CE=x-2,在Rt△BCE中,根据勾股定理得BE2+CE2=BC2列出关系x的方程,求出BC的长;在Rt△BCE中,可求得sin∠C的值,即为sin∠DAF的值.
试题解析:(1)证明:∵四边形ABCD是菱形,∴AD=BC,∠A=∠C.又DF⊥AB,BE⊥CD,∴∠AFD=∠CEB=90°,在△ADF和△CBE中,∠AFD=∠CEB,∠A=∠C,AD=CB,∴△ADF≌△CBE.∴AF=CE.
(2)设BC=x,则CE=x-2,在Rt△BCE中,BE2+CE2=BC2,∴42+(x-2)2=x2,∴x=5,∴sin∠DAF=sin∠C==.
练习册系列答案
相关题目