题目内容
已知一次函数y=-
x+6的图象与坐标轴交于A、B点(如图),AE平分∠BAO,交x轴于点E.
(1)求点B的坐标;
(2)求直线AE的表达式;
(3)过点B作BF⊥AE,垂足为F,连接OF,试判断△OFB的形状,并求△OFB的面积.
(4)若将已知条件“AE平分∠BAO,交x轴于点E”改变为“点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F.设OE=x,BF=y,试求y与x之间的函数关系式,并写出函数的定义域.
3 |
4 |
(1)求点B的坐标;
(2)求直线AE的表达式;
(3)过点B作BF⊥AE,垂足为F,连接OF,试判断△OFB的形状,并求△OFB的面积.
(4)若将已知条件“AE平分∠BAO,交x轴于点E”改变为“点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F.设OE=x,BF=y,试求y与x之间的函数关系式,并写出函数的定义域.
(1)对于y=-
3 |
4 |
当x=0时,y=6;当y=0时,x=8,
∴OA=6,OB=8,
在Rt△AOB中,根据勾股定理得:AB=10,
则A(0,6),B(8,0);
(2)过点E作EG⊥AB,垂足为G(如图1所示),
∵AE平分∠BAO,EO⊥AO,EG⊥AG,
∴EG=OE,
在Rt△AOE和Rt△AGE中,
|
∴Rt△AOE≌Rt△AGE(HL),
∴AG=AO,
设OE=EG=x,则有BE=8-x,BG=AB-AG=10-6=4,
在Rt△BEG中,EG=x,BG=4,BE=8-x,
根据勾股定理得:x2+42=(8-x)2,
解得:x=3,
∴E(3,0),
设直线AE的表达式为y=kx+b(k≠0),
将A(0,6),E(3,0)代入y=kx+b得:
|
解得:
|
则直线AE的表达式为y=-2x+6;
(3)延长BF交y轴于点K(如图2所示),
∵AE平分∠BAO,
∴∠KAF=∠BAF,
又BF⊥AE,
∴∠AFK=∠AFB=90°,
在△AFK和△AFB中,
∵
|
∴△AFK≌△AFB,
∴FK=FB,即F为KB的中点,
又∵△BOK为直角三角形,
∴OF=
1 |
2 |
∴△OFB为等腰三角形,
过点F作FH⊥OB,垂足为H(如图2所示),
∵OF=BF,FH⊥OB,
∴OH=BH=4,
∴F点的横坐标为4,
设F(4,y),将F(4,y)代入y=-2x+6,得:y=-2,
∴FH=|-2|=2,
则S△OBF=
1 |
2 |
1 |
2 |
(4)在Rt△AOE中,OE=x,OA=6,
根据勾股定理得:AE=
OE2+OA2 |
x2+36 |
又BE=OB-OE=8-x,S△ABE=
1 |
2 |
1 |
2 |
∴BF=
BE•AO |
AE |
6(8-x) | ||
|
则y=
6(8-x) | ||
|
练习册系列答案
相关题目