题目内容
【题目】已知y关于x的函数表达式是,下列结论不正确的是( )
A.若,函数的最大值是5
B.若,当时,y随x的增大而增大
C.无论a为何值时,函数图象一定经过点
D.无论a为何值时,函数图象与x轴都有两个交点
【答案】D
【解析】
将a的值代入函数表达式,根据二次函数的图象与性质可判断A、B,将x=1代入函数表达式可判断C,当a=0时,y=-4x是一次函数,与x轴只有一个交点,可判断D错误.
当时,,
∴当时,函数取得最大值5,故A正确;
当时,,
∴函数图象开口向上,对称轴为,
∴当时,y随x的增大而增大,故B正确;
当x=1时,,
∴无论a为何值,函数图象一定经过(1,-4),故C正确;
当a=0时,y=-4x,此时函数为一次函数,与x轴只有一个交点,故D错误;
故选D.
【题目】茶叶是安徽省主要经济作物之一,2020年新茶上市期间,某茶厂为获得最大利益,根据市场行情,把新茶价格定为400元/kg,并根据历年的相关数据整理出第x天(1≤x≤15,且x为整数)制茶成本(含采摘和加工)和制茶量的相关信息如下表.假定该茶厂每天制作和销售的新茶没有损失,且能在当天全部售出(当天收入=日销售额-日制茶成本)
制茶成本(元/kg) | 150+10x |
制茶量(kg) | 40+4x |
(1)求出该茶厂第10天的收入;
(2)设该茶厂第x天的收入为y(元).试求出y与x之间的函数关系式,并求出y的最大值及此时x的值.
【题目】如图1,线段及一定点,是线段上一动点(、除外),作直线,使于点,作直线,使于点.已知,,设,,数学学习小组根据学习函数的经验,对与之间的内在关系进行探究.
(1)写出y与之间的关系和的取值范围;
活动操作:
(2)①列表,根据(1)的所求函数关系式讲算并补全表格
0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | |
1.8 | 9 | 21 |
②描点:根据表格中数值,继续在图2中描出剩余的三个点;
③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.
数学思考:
(3)请你结合函数的图象,写出该函数的一条性质或结论.
(4)将该函数图象向上移3个单位,再向左平移4个单位后,直接写出平移后的函数关系式和的取值范围.