题目内容
【题目】甲、乙两人周末从同一地点出发去某景点,因乙临时有事,甲坐地铁先出发,甲出发0.2小时后乙开汽车前往.设甲行驶的时间为x(h),甲、乙两人行驶的路程分别为y1(km)与y2(km).如图①是y1与y2关于x的函数图象.
(1)分别求线段OA与线段BC所表示的y1与y2关于x的函数表达式;
(2)当x为多少时,两人相距6km?
(3)设两人相距S千米,在图②所给的直角坐标系中画出S关于x的函数图象.
【答案】
(1)解:设OA:y1=k1x,BC:y2=k2x+b,
则y1=k1x过点(1.2,72),
所以y1=60x,
∵y2=k2x+b过点(0.2,0)、(1.1,72),
∴ ,
解得 .
∴y2=80x﹣16.
(2)解:①60x=6,
解得x=0.1;
②60x﹣(80x﹣16)=6,
解得x=0.5;
③80x﹣16﹣60x=6,
解得x=1.1.
故当x为0.1或0.5或1.1小时,两人相距6千米.
(3)解:如图所示:
【解析】(1)根据待定系数法可求线段OA与线段BC所表示的y1与y2关于x的函数表达式;(2)分3种情况:①0<x<0.2;②甲、乙两人相遇前;③甲、乙两人相遇后;进行讨论可求x的值;(3)分4种情况:①0<x<0.2;②甲、乙两人相遇前;③甲、乙两人相遇后乙到达景点前;④甲、乙两人相遇后乙到达景点后;进行讨论可画出S关于x的函数图象.
【题目】小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.
(1)在实验中他们共做了50次试验,试验结果如下:
朝上的点数 | 1 | 2 | 3 | 4 | 5 | 6 |
出现的次数 | 10 | 9 | 6 | 9 | 8 | 8 |
①填空:此次实验中,“1点朝上”的频率是 ;
(2)在游戏时两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小亮获胜,否则小明获胜.则小亮与小明谁获胜的可能性大?试说明理由.