题目内容
【题目】如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是______.
【答案】
【解析】
首先确定m、n的值,推出有序整数(m,n)共有:3×7=21(种),由方程x2+nx+m=0有两个相等实数根,则需:△=n2-4m=0,有(0,0),(1,2),(1,-2)三种可能,由此即可解决问题.
解:m=0,±1,n=0,±1,±2,±3
∴有序整数(m,n)共有:3×7=21(种),
∵方程x2+nx+m=0有两个相等实数根,则需:△=n2-4m=0,有(0,0),(1,2),(1,-2)三种可能,
∴关于x的方程x2+nx+m=0有两个相等实数根的概率是,
故答案为.
练习册系列答案
相关题目