题目内容
【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F.
(1)试判断直线BC与⊙O的位置关系,并说明理由;
(2)若BD=2,BF=2,求⊙O的半径.
【答案】(1)相切,理由见解析;(2)2.
【解析】
(1)求出OD//AC,得到OD⊥BC,根据切线的判定得出即可;
(2)根据勾股定理得出方程,求出方程的解即可.
(1)直线BC与⊙O的位置关系是相切,
理由是:连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠CAB,
∴∠OAD=∠CAD,
∴∠ODA=∠CAD,
∴OD∥AC,
∵∠C=90°,
∴∠ODB=90°,即OD⊥BC,
∵OD为半径,
∴直线BC与⊙O的位置关系是相切;
(2)设⊙O的半径为R,
则OD=OF=R,
在Rt△BDO中,由勾股定理得:OB=BD+OD,
即(R+2) =(2)+R,
解得:R=2,
即⊙O的半径是2.
练习册系列答案
相关题目