题目内容

【题目】如图,在ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F处.若△FDE的周长为5,△FCB的周长为17,则FC的长为

【答案】6
【解析】解:如图,

∵四边形ABCD为平行四边形,
∴AD=BC,AB=DC;
由题意得:AE=FE,AB=BF;
∵△FDE的周长为5,△FCB的周长为17,
∴DE+DF+EF=5,CF+BC+BF=17,
∴(DE+EA)+(DF+CF)+BC+AB=22,
即2(AB+BC)=22,
∴AB+BC=11,即BF+BC=11;
∴FC=17﹣11=6,
所以答案是6.
【考点精析】解答此题的关键在于理解翻折变换(折叠问题)的相关知识,掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网