题目内容
【题目】如图,在直角梯形ABCD中,AD∥BC,∠C=90°,CD=6cm,AD=2cm,动点P、Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到C点停止,两点运动时的速度都是1cm/s,而当点P到达点A时,点Q正好到达点C.设P点运动的时间为t(s),△BPQ的面积为y(cm2).下图中能正确表示整个运动中y关于t的函数关系的大致图象是( )
A.
B.
C.
D.
【答案】B
【解析】解:做AE⊥BC于E,根据已知可得,AB=BC,∴AB2=62+(AB﹣2)2 , 解之得,AB=BC=10cm.
由图可知:P点由B到A,△BPQ的面积从小到大,且达到最大此时面积= ×10×6=30cm2 .
当P点在AD上时,因为同底同高,所以面积保持不变;
当P点从D到C时,面积又逐渐减小;又因为AB=10cm,AD=2cm,CD=6cm,速度为1cm/s,
则在这三条线段上所用的时间分别为10s、2s、6s.
故选B.
【考点精析】本题主要考查了函数的图象的相关知识点,需要掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值才能正确解答此题.
练习册系列答案
相关题目