题目内容
【题目】如图,在矩形ABCD中,E是AB的中点,连接DE、CE.
(1)求证:△ADE≌△BCE;
(2)若AB=6,AD=4,求△CDE的周长.
【答案】(1)证明见解析;(2)16.
【解析】(1)由全等三角形的判定定理SAS即可证得结论;
(2)由(1)中全等三角形的对应边相等和勾股定理求得线段DE的长度,结合三角形的周长公式解答.
(1)在矩形ABCD中,AD=BC,∠A=∠B=90°.
∵E是AB的中点,
∴AE=BE,
在△ADE与△BCE中,
,
∴△ADE≌△BCE(SAS);
(2)由(1)知:△ADE≌△BCE,则DE=EC,
在直角△ADE中,AE=4,AE=AB=3,
由勾股定理知,DE==5,
∴△CDE的周长=2DE+AD=2DE+AB=2×5+6=16.
练习册系列答案
相关题目