题目内容
【题目】如图,二次函数的图象开口向上,图象经过点和,且与轴相交于负半轴.
第问:给出四个结论:①;②;③;④.写出其中正确结论的序号(答对得分,少选、错选均不得分)
第 问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.写出其中正确结论的序号.
【答案】(1)正确的序号为①④;(2)正确的序号为②③④.
【解析】
(1)根据抛物线开口向上对①进行判断;根据抛物线对称轴x=-在y轴右侧对②进行判断;根据抛物线与y轴的交点在x轴下方对③进行判断;根据x=1时,y=0对④进行判断;
(2)有(1)得到a>0,b<0,c<0,则可对①进行判断;根据0<-<1可对②进行判断;把点(-1,2)和(1,0)代入解析式得a﹣b+c=2,a+b+c=0,整理有a+c=1,则可对③进行判断;根据a=1-c,c<0可对④进行判断.
(1)①由抛物线的开口方向向上可推出a>0,正确;
②因为对称轴在y轴右侧,对称轴为x=>0.
又∵a>0,∴b<0,错误;
③由抛物线与y轴的交点在y轴的负半轴上,∴c<0,错误;
④由图象可知:当x=1时y=0,∴a+b+c=0,正确.
故(1)中,正确结论的序号是①④.
(2)①∵a>0,b<0,c<0,∴abc>0,错误;
②由图象可知:对称轴x=>0且对称轴x=<1,∴2a+b>0,正确;
③由图象可知:当x=﹣1时y=2,∴a﹣b+c=2,当x=1时y=0,∴a+b+c=0;
a﹣b+c=2与a+b+c=0相加得2a+2c=2,解得:a+c=1,正确;
④∵a+c=1,移项得:a=1﹣c.
又∵c<0,∴a>1,正确.
故(2)中,正确结论的序号是②③④.
练习册系列答案
相关题目