题目内容

如图,在正方形ABCD中,AB=4,点E是边CD上的任意一点(不与C、D重合),将△ADE沿AE翻折至△AFE,延长EF交边BC于点G,连接AG.
(1)求证:△ABG≌△AFG;
(2)若设DE=x,BG=y,求y与x的函数关系式,并写出自变量x的取值范围;
(3)连接CF,若AGCF,求DE的长.
(1)证明:∵四边形ABCD为正方形,
∴∠D=∠B=90°,AB=AD,
∵△ADE沿AE翻折至△AFE,
∴AD=AF,∠D=∠AFE=90°,
∴AB=AF,
在Rt△ABG和Rt△AFG中
AB=AF
AG=AG

∴△ABG≌△AFG(HL);

(2)∵△ADE≌△AFE,△ABG≌△AFG,
∴BG=FG,DE=FE,
∴EG=FE+FG,
∵AB=4,
∴BC=CD=4,
∵DE=x,BG=y,
∴EC=4-x,GE=x+y,GC=4-y,
∴在Rt△EGC中,CG2+CE2=GE2
∴(4-y)2+(4-x)2=(x+y)2
∴y=
-4x+16
x+4
(0<x<4);

(3)∵AGCF,
∴∠AGB=∠FCG,∠AGF=∠GFC,
∵△ABG≌△AFG,
∴∠AGB=∠AGF,
∴∠FCG=∠GFC,
∴CG=GF,
∴y=4-y,解得y=2,
把y=2代入y=
-4x+16
x+4
-4x+16
x+4
=2,解得x=
4
3

∴DE=
4
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网