题目内容
【题目】在中,,CD是中线,,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AE交于点M,DE与BC交于点N.
(1)如图1,若,求证:;
(2)如图2,在绕点D旋转的过程中,试证明恒成立;
(3)若,,求DN的长.
【答案】(1)详见解析;(2)详见解析;(3)
【解析】
(1)根据等腰直角三角形的性质得到∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,于是得到∠DCE=∠DCF=135°,根据全等三角形的性质即可的结论;
(2)证得△CDF∽△CED,根据相似三角形的性质得到,即CD2=CECF;
(3)如图,过D作DG⊥BC于G,于是得到∠DGN=∠ECN=90°,CG=DG,当CD=2,时,求得,再推出△CEN∽△GDN,根据相似三角形的性质得到,求出GN,再根据勾股定理即可得到结论.
(1)证明:∵,,CD是中线,
∴,,
∴.
在与中,,
∴.
∴;
(2)证明:∵,
∴
∵,
∴.
∴.
∴,即.
(3)如图,过D作于点G,
则,.
当,时,
由,得.
在中,
.
∵,,
∴.
∴,
∴.
∴.
练习册系列答案
相关题目
【题目】官渡区某校八年级(1)班同学为了解某市2019年小区家庭月均用水情况,随机调查了该小区都分家庭,并将调查数据进行如下整理:
月均用水量(吨) | 频数(户) | 频率 |
6 | 0.12 | |
0.24 | ||
16 | 0.32 | |
10 | 0.20 | |
4 | ||
2 | 0.04 |
请解答下列问题:
(1)填空:样本容量是______,______,_______;
(2)把频数分布直方图补充完整;
(3)若该小区有1000户家庭,请估计该小区月均用水量满足的家庭有多少户?