题目内容

【题目】已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.
(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;
(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.

【答案】
(1)

证明:(1)①如图1,

∵AB⊥AD,AE⊥AC,

∴∠BAD=90°,∠CAE=90°,

∴∠1=∠2,

在△ABC和△ADE中,

∴△ABC≌△ADE(SAS);

②如图1 ,

∵△ABC≌△ADE,

∴∠AEC=∠3,

在Rt△ACE中,∠ACE+∠AEC=90°,

∴∠BCE=90°,

∵AH⊥CD,AE=AC,

∴CH=HE,

∵∠AHE=∠BCE=90°,

∴BC∥FH,

=1,

∴BF=EF;


(2)

解:结论仍然成立,理由是:

如图2所示,

过E作MN⊥AH,交BA、CD延长线于M、N,

∵∠CAE=90°,∠BAD=90°,

∴∠1+∠2=90°,∠1+∠CAD=90°,

∴∠2=∠CAD,

∵MN∥AH,

∴∠3=∠HAE,

∵∠ACH+∠CAH=90°,∠CAH+∠HAE=90°,

∴∠ACH=∠HAE,

∴∠3=∠ACH,

在△MAE和△DAC中,

∴△MAE≌△DAC(ASA),

∴AM=AD,

∵AB=AD,

∴AB=AM,

∵AF∥ME,

=1,

∴BF=EF.


【解析】(1)①利用SAS证全等;
②易证得:BC∥FH和CH=HE,根据平行线分线段成比例定理得BF=EF,也可由三角形中位线定理的推论得出结论.
(2)作辅助线构建平行线和全等三角形,首先证明△MAE≌△DAC,得AD=AM,根据等量代换得AB=AM,根据②同理得出结论.本题考查了全等三角形的性质和判定,平行线分线段成比例的性质,本题的关键是能正确找出全等三角形;在几何图形中证明线段相等或已知线段相等的一般思路是:①证明相等线段所在的三角形全等;②利用相等线段的比值为1证相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网