题目内容

【题目】如图,AB=AC,CDABD,BEACE,BECD相交于点O.

(1)求证:AD=AE;

(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.

【答案】(1)证明见解析;(2)直线OA垂直平分BC.理由见解析.

【解析】试题分析:(1)根据AAS推出△ACD≌△ABE,根据全等三角形的性质得出即可;

(2)证Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根据等腰三角形的性质推出即可.

试题解析:(1)证明:∵CDAB,BEAC,
∴∠ADC=AEB=90°
ACDABE中,

∴△ACD≌△ABE(AAS),
AD=AE.
(2)猜想:OABC.
证明:连接OA、BC,


CDAB,BEAC,
∴∠ADC=AEB=90°
RtADORtAEO中,

RtADORtAEO(HL).
∴∠DAO=EAO,
又∵AB=AC,
OABC.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网