题目内容

如图1,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.

(1)当直线l不与底边AB相交时,求证:EF=AE+BF.
(2)如图2,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下三种可能的位置时,EF、AE、BF三者之间的数量关系.(直接填空)
①当AD>BD时,关系是:
AE=BF+EF
AE=BF+EF

②当AD=BD时,关系是:
AE=BF
AE=BF

③当AD<BD时,关系是:
BF=AE+EF
BF=AE+EF
分析:(1)求出∠AEC=∠BFC=90°,∠EAC=∠FCB,根据AAS证△EAC≌△FCB,推出CE=BF,AE=CF即可;
(2)类比(1)证得对应的两个三角形全等,求出线段之间的关系即可.
解答:解:(1)证明:∵AE⊥EF,BF⊥EF,∠ACB=90°
∴∠AEC=∠BFC=∠ACB=90°,
∴∠EAC+∠ECA=90°,∠ECA+∠FCB=90°,
∴∠EAC=∠FCB,
在△EAC和△FCB中,
∠AEC=∠CFB
∠EAC=FCB
AC=BC

∴△EAC≌△FCB(AAS),
∴CE=BF,AE=CF,
∴EF=CE+CF=AE+BF,
即EF=AE+BF;

(2)①当AD>BD时,
∵∠ACB=90°,AE⊥L直线,
∴∠BCF=∠CAE(同为∠ACD的余角),
又∵AC=BC,BF⊥L直线
即∠BFC=∠AEC=90°,
∴△ACE≌△BCF,
∴CF=AE,CE=BF,
∵CF=CE+EF=BF+EF,
∴AE=BF+EF;
②当AD=BD时,
AD=AE,BF=BD,
∵AD⊥AB,AC=BC,AD=AD,
∴Rt△ADC≌Rt△BDC(HL),
∴AD=BD,
∴AE=BF;
③当AD<BD时,
∵∠ACB=90°,BF⊥L直线,
∴∠CBF=∠ACE(同为∠BCD的余角),
又∵AC=BC,BE⊥L直线,
即∠AEC=∠BFC=90°
∴△ACE≌△BCF,
∴CF=AE,BF=CE,
∵CE=CF+EF=AE+EF,
∴BF=AE+EF.
点评:此题考查三角形全等的判定与性质,以及等量代换等知识点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网