题目内容

如图1,在△ABC中,∠BAC的平分线AD与∠BCA的平分线CE交于点O.
(1)求证:∠AOC=90°+
12
∠ABC;
(2)当∠ABC=90°时,且AO=3OD(如图2),判断线段AE,CD,AC之间的数量关系,并加以证明.
分析:(1)求出∠BAC+∠BCA=180°-∠ABC,根据角平分线定义求出∠OAC=
1
2
∠BAC,∠OCA=
1
2
∠BCA,即可求出∠OAC+∠OCA的度数,根据三角形内角和定理求出即可.
(2)在AC上分别截取AM、CN,使AM=AE,CN=CD,连接OM,ON,证△AEO≌△AMO,△DCO≌△NCO,推出∠EOA=∠MOA,∠CON=∠COD,OD=ON,求出∠MON=∠MOA=45°,根据角平分线性质求出MK=ML,根据S△AOM=
1
2
AO×MK,S△MON=
1
2
ON×ML求出
AO
ON
=
AM
MN
,求出
AO
ON
=
AM
MN
=
3
1
,推出AN=
4
3
AM=
4
3
AE即可.
解答:(1)证明:∵∠ABC+∠ACB+∠BAC=180°,
∴∠BAC+∠BCA=180°-∠ABC,
∵∠BAC的平分线AD与∠BCA的平分线CE交于点O.
∴∠OAC=
1
2
∠BAC,∠OCA=
1
2
∠BCA,
∴∠OAC+∠OCA=
1
2
(∠BAC+∠BCA)=
1
2
(180°-∠ABC)=90°-
1
2
∠ABC,
∴∠AOC=180°-(∠OAC+∠OCA)=180°-(90°-
1
2
∠ABC),
即∠AOC=90°+
1
2
∠ABC.

(2)
4
3
AE+CD=AC,
证明:∵∠AOC=90°+
1
2
∠ABC=135°,
∴∠EOA=45°,
在AC上分别截取AM、CN,使AM=AE,CN=CD,连接OM,ON,
则在△AEO和△AMO中
AE=AM
∠EAO=∠MAO
AO=AO

∴△AEO≌△AMO,
同理△DCO≌△NCO,
∴∠EOA=∠MOA,∠CON=∠COD,OD=ON,
∴∠EOA=∠MOA=∠CON=∠COD=45°,
∴∠MON=∠MOA=45°,
过M作MK⊥AD于K,ML⊥ON于L,
∴MK=ML,
S△AOM=
1
2
AO×MK,S△MON=
1
2
ON×ML,
AO
ON
=
S△AOM
S△MON

S△AOM
S△MON
=
AM
MN

AO
ON
=
AM
MN

∵AO=3OD,
AO
OD
=
3
1

AO
ON
=
AM
MN
=
3
1

∴AN=
4
3
AM=
4
3
AE,
∵AN+NC=AC,
4
3
AE+CD=AC.
点评:本题考查了全等三角形的性质和判定,角平分线定义和性质,三角形的面积,三角形内角和定理的应用,题目比较好,综合性比较强,难度偏大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网