题目内容
【题目】如图,在△ABC中,BC的垂直平分线分别交BC、AC于点D、E,BE交AD于点F,AB=AD.
(1)判断△FDB与△ABC是否相似,并说明理由;
(2)BC=6,DE=2,求△BFD的面积.
【答案】(1)相似,理由见解析;(2).
【解析】
(1)根据线段垂直平分线的性质得出BE=CE,根据等腰三角形的性质得出∠EBC=∠ECB,∠ABC=∠ADB,根据相似三角形的判定得出即可;
(2)根据△FDB∽△ABC得出==,求出AB=2FD,可得AD=2FD,DF=AF,根据三角形的面积得出S△AFB=S△BFD,S△AEF=S△EFD,根据DE为BC的垂直平分线可得S△BDE=S△CDE,可求出△ABC的面积,再根据相似三角形的性质求出答案即可.
(1)△FDB与△ABC相似,理由如下:
∵DE是BC垂直平分线,
∴BE=CE,
∴∠EBC=∠ECB,
∵AB=AD,
∴∠ABC=∠ADB,
∴△FDB∽△ABC.
(2)∵△FDB∽△ABC,
∴==,
∴AB=2FD,
∵AB=AD,
∴AD=2FD,
∴DF=AF,
∴S△AFB=S△BFD,S△AEF=S△EFD,
∴S△ABC=3S△BDE=3××3×2=9,
∵△FDB∽△ABC,
∴=()2=()2=,
∴S△BFD=S△ABC=×9=.
练习册系列答案
相关题目
【题目】某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:
数量/条 | 平均每条鱼的质量/kg | |
第1次捕捞 | 20 | 1.6 |
第2次捕捞 | 15 | 2.0 |
第3次捕捞 | 15 | 1.8 |
(1)求样本中平均每条鱼的质量;
(2)估计鱼塘中该种鱼的总质量;
(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y(元)与出售该种鱼的质量x(kg)之间的函数关系,并估计自变量x的取值范围.