题目内容

【题目】如图1,已知:ABCD,点EF分别在ABCD上,且OEOF

(1)求证:∠1+∠2=90°;

(2)如图2,分别在OECD上取点GH,使FO平分∠CFGEO平分∠AEH,求证:FGEH

【答案】(1)证明见解析(2)证明见解析

【解析】试题分析:(1)过点O作OM∥AB,根据平行线的性质得出∠1=∠EOM,求出OM∥CD,根据平行线的性质可求解;

(2)根据平行线的性质得出∠AEH+∠CHE=180°,根据角平分线的性质和平行线的判定可求解.

试题解析:(1)方法一:过点OOMAB

则∠1=∠EOM

ABCD

OMCD

∴∠2=∠FOM

OEOF

∴∠EOF=90°,即∠EOM+∠FOM=90°

∴∠1+∠2=90°

方法二:过点FFNOEABN

则∠1=∠ANF,∠EOF+∠OFN=180°

OEOF

∴∠EOF=90°

∴∠OFN=180°-∠EOF=90°

ABCD

∴∠ANF=∠NFD

∴∠1=∠NFD

∵∠1+∠OFN+∠NFD=180°

∴∠1+∠2=180°-∠OFN=90°

(2)∵ABCD

∴∠AEH+∠CHE=180°

FO平分∠CFGEO平分∠AEH

∴∠CFG=2∠2,∠AEH=2∠1

∵∠1+∠2=90°

∴∠CFG+∠AEH=2∠1+2∠2=180°

∴∠CFG=∠CHE

FGEH

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网