题目内容
【题目】如图,已知在△ABC中,AB=AC=10cm,BC=8cm,D为AB中点,设点P在线段BC上以3cm/秒的速度由B点向C点运动,点Q在线段CA上由C点向A点运动.
(1)若Q点运动的速度与P点相同,且点P,Q同时出发,经过1秒钟后△BPD与△CQP是否全等,并说明理由;
(2)若点P,Q同时出发,但运动的速度不相同,当Q点的运动速度为多少时,能在运动过程中有△BPD与△CQP全等?
(3)若点Q以(2)中的速度从点C出发,点P以原来的速度从点B同时出发,都是逆时针沿△ABC的三边上运动,经过多少时间点P与点Q第一次在△ABC的哪条边上相遇?
【答案】(1)详见解析;(2)cm/秒;(3)秒在AB边相遇.
【解析】
(1)求出BD,CP,根据全等三角形的判定即可,
(2)由全等推出时间t,在利用CQ=BD求出Q的速度即可,
(3)求出Q的运动路程,根据△ABC的三边长度即可确定Q的位置.
(1)解:∵t=1秒,∴BP=CQ=3×1=3cm,
∵AB=10cm,点D为AB的中点,∴BD=5cm.
又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.
又∵AB=AC,∴∠B=∠C,
在△BPD和△CQP中,
∴△BPD≌△CQP(SAS).
(2)解:∵vP≠vQ,
∴BP≠CQ,
又∵△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,
∴点P,点Q运动的时间t= 秒,∴vQ= cm/秒;
(3)设经过x秒后点P与点Q第一次相遇,
由题意,得 x=3x+2×10,解得x=.
∴点P共运动了×3=80cm.∴80=56+24=2×28+24,∴点P、点Q在AB边上相遇,
∴经过秒点P与点Q第一次在边AB上相遇.
【题目】一次期中考试中,甲、乙、丙、丁、戊五位同学的数学、英语成绩等有关信息如下表所示(单位:分):
(1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;
(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式:标准分=(个人成绩-平均成绩)÷成绩标准差.
从标准分看,标准分大的考试成绩更好,请问甲同学在本次考试中,数学与英语哪个学科考得更好?
甲 | 乙 | 丙 | 丁 | 戊 | 平均分 | 标准差 | |
数学 | 71 | 72 | 69 | 68 | 70 | ||
英语 | 88 | 82 | 94 | 85 | 76 | 85 |