题目内容

【题目】已知二次函数y=x2﹣(2k+1)x+k2+k(k>0)
(1)当k= 时,将这个二次函数的解析式写成顶点式;
(2)求证:关于x的一元二次方程x2﹣(2k+1)x+k2+k=0有两个不相等的实数根.

【答案】
(1)解:把k= 代入y=x2﹣(2k+1)x+k2+k(k>0)得y=x2﹣2x+

因为y=(x﹣1)2

所以抛物线的顶点坐标为(1,﹣


(2)证明:△=(2k+1)2﹣4(k2+k)=1>0,

所以关于x的一元二次方程x2﹣(2k+1)x+k2+k=0有两个不相等的实数根


【解析】(1)把k代入抛物线解析式,然后利用配方法可确定抛物线的顶点坐标;(2)计算判别式的值,然后判别式的意义进行证明.
【考点精析】掌握抛物线与坐标轴的交点是解答本题的根本,需要知道一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网