题目内容

【题目】如图,直线y=kx+2与x轴、y轴分别交于点A、B,点C(1,a)是该直线与双曲线y=的一个交点,过点C作CD垂直y轴,垂足为D,且S△BCD=1.
(1)求双曲线的解析式.
(2)设直线与双曲线的另一个交点为E,求点E的坐标.

【答案】解:(1)∵△BCD的面积为1,
即BD=2,
又∵点B是直线y=kx+2与y轴的交点,
∴点B的坐标为(0,2).
∴点D的坐标为(0,4),
∵CD⊥y轴;
∴点C的纵坐标为4,即a=4,
∵点C在双曲线上,
∴将x=1,y=4,代入y=,得m=4,
∴双曲线的解析式为y=
(2)∵点C(1,4)在直线y=kx+2上,
∴4=k+2,k=2,
∴直线AB的解析式为y=2x+2.
联立方程组:,解得经检验,是方程组的解,
故E(﹣2,﹣2).
【解析】(1)先根据△BCD的面积是1求出BD的值,进而得出B、D两点的坐标求出a的值,再把点C的坐标代入双曲线y=的即可求出双曲线的解析式;
(2)把C点坐标代入直线y=kx+2即可得出k的值,进而得出直线AB的解析式,在解直线与双曲线解析式组成的方程组即可求出点E的坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网