题目内容
【题目】阅读下面材料:
小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数: ,称为数列.计算, , 将这三个数的最小值称为数列的价值.例如,对于数列2,﹣1,3,因为, , ,所以数列2,﹣1,3的价值为.
小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列﹣1,2,3的价值为;数列3,﹣1,2的价值为1;….经过研究,小丁发现,对于“2,﹣1,3”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为.根据以上材料,回答下列问题:
(1)数列﹣4,﹣3,2的价值为 ;
(2)将“﹣4,﹣3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的价值的最小值为 ,取得价值最小值的数列为 (写出一个即可);
(3)将2,﹣9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的价值的最小值为1,则a的值为 .
【答案】(1)(2);-3,2,-4或2,-3,-4(3)11或4或7或10
【解析】试题分析:(1)根据上述材料给出的方法计算其相应的价值即可;
(2)按照三个数不同的顺序排列算出价值,由计算可以看出,要求得这些数列的价值的最小值;只有当前两个数的和的绝对值最小,最小只能为|-3+2|=1,由此得出答案即可;
(3)分情况算出对应的数值,建立方程求得a的数值即可.
试题解析::(1)因为|-4|=4,||=3.5,||=,
所以数列-4,-3,2的价值为.
(2)数列的价值的最小值为||=,
数列可以为:-3,2,-4,;或2,-3,-4.
(3)当||=1,则a=0,不合题意;
当||=1,则a=11或7;
当||=1,则a=4或10.
【题目】某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机进货量的一半.电视机与洗衣机的进价和售价如下表:
类 别 | 电视机 | 洗衣机 |
进价(元/台) | 1 800 | 1 500 |
售价(元/台) | 2 000 | 1 600 |
计划购进电视机和洗衣机共 100 台,商店最多可筹集资金161 800 元.
(1)请你帮助商店算一算有多少种进货方案(不考虑除进价之外的其他费用);
(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得的利润最多?并求出最大的利润(利润=售价-进价).