题目内容
【题目】若存在3个互不相同的有理数a,b,c,使得|1﹣a|+|1﹣3a|+|1﹣4a|=|1﹣b|+|1﹣3b|+|1﹣4b|=|1﹣c|+|1﹣3c|+|1﹣4c|=t,则t=
A. B. C. 1 D. 2
【答案】C
【解析】试题解析:
存在3个互不相同的实数a,b,c,使得|1-a|+|1-3a|+|1-4a|=|1-b|+|1-3b|+|1-4b|=|1-c|+|1-3c|+|1-4c|=t,
当a≥1时,原式=a-1+3a-1+4a-1=8a-3;
当≤a<1时,原式=1-a+3a-1+4a-1=6a-1;
当≤a<时,原式=1-a-3a+1+4a-1=1;
当a<时,原式=1-a+1-3a+1-4a=3-8a,
则t=1,
故选B.
练习册系列答案
相关题目
【题目】某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机进货量的一半.电视机与洗衣机的进价和售价如下表:
类 别 | 电视机 | 洗衣机 |
进价(元/台) | 1 800 | 1 500 |
售价(元/台) | 2 000 | 1 600 |
计划购进电视机和洗衣机共 100 台,商店最多可筹集资金161 800 元.
(1)请你帮助商店算一算有多少种进货方案(不考虑除进价之外的其他费用);
(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得的利润最多?并求出最大的利润(利润=售价-进价).