题目内容
【题目】“友谊商场”某种商品平均每天可销售100件,每件盈利20元.“五一”期间,商场决定采取适当的降价措施.经调查发现,每件该商品每降价1元,商场平均每天可多售出10件.设每件商品降价x元.据此规律,请回答:
(1)降价后每件商品盈利 元,商场日销售量增加 件 (用含x的代数式表示);
(2)在上述条件不变的情况下,求每件商品降价多少元时,商场日盈利最大,最大值是多少?
【答案】(1)(20﹣x),10x; (2)每件商品降价5元时,商场日盈利最大,最大值是2250元.
【解析】试题分析:(1)降价1元,可多售出10件,降价元,可多售出件,盈利的钱数=原来的盈利-降低的钱数;
(2)等量关系为:每件商品的盈利×可卖出商品的件数=利润,化为一般式后,配方可得结论.
试题解析:
(1)故答案为:(20x),10x;
(2)设每件商品降价x元时,利润为w元,
根据题意得:
∵10<0,
∴w有最大值,
当x=5时,商场日盈利最大,最大值是2250元;
答:每件商品降价5元时,商场日盈利最大,最大值是2250元.
【题目】某商场用2700元购进甲、乙两种商品共100件,这两种商品的进价、标价如下表所示:
甲种 | 乙种 | |
进价(元/件) | 15 | 35 |
标价(元/件) | 20 | 45 |
(1)求购进两种商品各多少件?
(2)商品将两种商品全部卖出后,获得的利润是多少元?
【题目】珠海市水务局对某小区居民生活用水情况进行了调査.随机抽取部分家庭进行统计,绘制成如下尚未完成的频数分布表和频率分布直方图.请根据图表,解答下列问题:
月均用水量(单位:吨 | 频数 | 频率 |
2≤x<3 | 4 | 0.08 |
3≤x<4 | a | b |
4≤x<5 | 14 | 0.28 |
5≤x<6 | 9 | c |
6≤x<7 | 6 | 0.12 |
7≤x<8 | 5 | 0.1 |
合计 | d | 1.00 |
(1)b= ,c= ,并补全频数分布直方图;
(2)为鼓励节约用水用水,现要确定一个用水量标准P(单位:吨),超过这个标准的部分按1.5倍的价格收费,若要使60%的家庭水费支出不受影响,则这个用水量标准P= 吨;
(3)根据该样本,请估计该小区400户家庭中月均用水量不少于5吨的家庭约有多少户?