题目内容
【题目】如图所示,我国两艘海监船 A,B 在南海海域巡逻,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船 C,此时,B 船在A 船的正南方向 15 海里处,A 船测得渔船 C 在其南偏东 45°方向,B 船测得渔船 C 在其南偏东 53°方向,已知 A 船的航速为 30 海里/小时,B 船的航速为 25 海里/小时,问 C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈ 4 , 1.41 )
【答案】至少要等0.94 h.
【解析】
如图,作CE⊥AB于E.设AE=EC=x,则BE=x﹣5.在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.
如图,作CE⊥AB于E.
在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5.在Rt△BCE中.
∵tan53°==,解得:x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,
∴C船至少要等待0.94小时才能得到救援.
练习册系列答案
相关题目