题目内容
【题目】已知:△ABC内接于⊙O,AB是⊙O的直径,作EG⊥AB于H,交BC于F,延长GE交直线MC于D,且∠MCA=∠B,求证:
(1)MC是⊙O的切线;
(2)△DCF是等腰三角形.
【答案】(1)详见解析;(2)详见解析.
【解析】
(1)连接OC,如图,利用圆周角定理得到∠2+∠3=90°,再证明∠1=∠3得到∠1+∠2=90°,即∠OCM=90°,然后根据切线的判定定理可得到结论;
(2)利用EG⊥AB得到∠B+∠BFH=90°,利用对顶角相等得到∠4+∠B=90°,而根据切线的性质得到∠5+∠3=90°,从而得到∠4=∠5,然后根据等腰三角形的判定定理可得结论.
证明:(1)连接OC,如图,
∵AB是⊙O的直径,
∴∠ACB=90°,
即∠2+∠3=90°,
∵OB=OC,
∴∠B=∠3,
而∠1=∠B,
∴∠1=∠3,
∴∠1+∠2=90°,
即∠OCM=90°,
∴OC⊥CM,
∴MC是⊙O的切线;
(2)∵EG⊥AB,
∴∠B+∠BFH=90°,
而∠BFH=∠4,
∴∠4+∠B=90°,
∵MD为切线,
∴OC⊥CD,
∴∠5+∠3=90°,
而∠3=∠B,
∴∠4=∠5,
∴△DCF是等腰三角形.
练习册系列答案
相关题目