题目内容
【题目】如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5 cm,且tan∠EFC= ,则矩形ABCD的周长是 .
【答案】36cm
【解析】解:设CE=3k,则CF=4k,由勾股定理得EF=DE=5k,
∴DC=AB=8k,
∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°,
∴∠BAF=∠EFC,
∴tan∠BAF=tan∠EFC= ,
∴BF=6k,AF=BC=AD=10k,
在Rt△AFE中由勾股定理得AE= = =5 ,
解得:k=1,
故矩形ABCD的周长=2(AB+BC)=2(8k+10k)=36cm.
【考点精析】解答此题的关键在于理解翻折变换(折叠问题)的相关知识,掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
练习册系列答案
相关题目