题目内容
【题目】图1、图2中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.
(1) 如图1,线段AN与线段BM是否相等?证明你的结论;
(2) 如图2,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.
图1 图2
【答案】(1)相等,证明见解析;(2)△CEF的形状是等边三角形.
【解析】
(1)等边三角形的性质可以得出△ACN、△MCB两边及夹角分别对应相等,;两个三角形全等,得出线段AN=BM;(2)平角的定义得出∠MCN=60°,通过证明△ACE≌△MCF,得出CE=CF,根据等边三角形的判定得出△CEF的形状.
(1)∵△ACM与△CBN都是等边三角形,
∴AC=MC,CN=CB,∠ACM=∠BCN=60°.
∴∠MCN=60°,∠ACN=∠MCB,
在△ACN和△MCB中,
AC=MC, ∠ACN=∠MCB,CN=CB,
∴△ACN≌△MCB(SAS),∴AN=BM.
(2)∵∠ACM=60°,∠MCN=60°,∴∠ACM=∠MCN,
∵△ACN≌△MCB,
∴∠CAE=∠CMB.
在△ACE和△MCF中,
∠CAE=∠CMF,AC=MC, ∠ACE=∠MCF,
∴△ACE≌△MCF(ASA),
∴CE=CF,
∴△CEF的形状是等边三角形.
练习册系列答案
相关题目